MySQL索引学习总结

标签: sql函数

概述

索引类似大学图书馆建的书目索引,可以提高数据检索的效率,降低数据库的IO成本。MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。

一、导致SQL执行慢的原因

1、硬件问题。如网络速度慢,内存不足,I/O吞吐量小,磁盘空间满了等。

2、没有索引或者索引失效。(一般在互联网公司,DBA会在半夜把表锁了,重新建立一遍索引,因为当你删除某个数据的时候,索引的树结构就不完整了。所以互联网公司的数据做的是假删除.一是为了做数据分析,二是为了不破坏索引 )

3、数据过多(分库分表)

4、服务器调优及各个参数设置(调整my.cnf)

二、分析原因,找到切入点

1、先观察,开启慢查询日志,设置相应的阈值(比如超过3秒就是慢SQL),在生产环境跑上个一天过后,看看哪些SQL比较慢。

2、Explain和慢SQL分析。比如SQL语句写的烂,索引没有或失效,关联查询太多(有时候是设计缺陷或者不得以的需求)等等。

3、Show Profile是比Explain更近一步的执行细节,可以查询到执行每一个SQL都干了什么事,这些事分别花了多少秒。

4、找DBA或者运维对MySQL进行服务器的参数调优。

三、什么是索引

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。我们可以简单理解为:快速查找排好序的一种数据结构。Mysql索引主要有两种结构:B+Tree索引和Hash索引。我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。索引如图所示:
在这里插入图片描述
最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13……非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

四、Explain分析

首先建测试表,并插入需要测试的数据
CREATE TABLE user_info (

  `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,

  `name` VARCHAR(50) NOT NULL DEFAULT '',

  `age`  INT(11)              DEFAULT NULL,

  PRIMARY KEY (`id`),

  KEY `name_index` (`name`)

)ENGINE = InnoDB DEFAULT CHARSET = utf8;

 
INSERT INTO user_info (name, age) VALUES ('xys', 20);

INSERT INTO user_info (name, age) VALUES ('a', 21);

INSERT INTO user_info (name, age) VALUES ('b', 23);

INSERT INTO user_info (name, age) VALUES ('c', 50);

INSERT INTO user_info (name, age) VALUES ('d', 15);

INSERT INTO user_info (name, age) VALUES ('e', 20);

INSERT INTO user_info (name, age) VALUES ('f', 21);

INSERT INTO user_info (name, age) VALUES ('g', 23);

INSERT INTO user_info (name, age) VALUES ('h', 50);

INSERT INTO user_info (name, age) VALUES ('i', 15);

CREATE TABLE `order_info` (

  `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,

  `user_id`      BIGINT(20)           DEFAULT NULL,

  `product_name` VARCHAR(50) NOT NULL DEFAULT '',

  `productor`    VARCHAR(30)          DEFAULT NULL,

  PRIMARY KEY (`id`),

  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');

INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');

INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');

INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');

INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');

INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');

INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');

创建了表 user_info 和 order_info

执行 EXPLAIN SELECT * FROM order_info;
在这里插入图片描述接下来从左往右依次解释每个列的关键字含义

1、id
id相同,执行顺序由上而下
在这里插入图片描述id不同,值越大越先被执行
在这里插入图片描述
2、select_type

总共有以下几种类型

SIMPLE: 表示此查询不包含 UNION 查询或子查询

PRIMARY: 表示此查询是最外层的查询

SUBQUERY: 子查询中的第一个 SELECT

UNION: 表示此查询是 UNION 的第二或随后的查询

DEPENDENT UNION: UNION 中的第二个或后面的查询语句, 取决于外面的查询

UNION RESULT, UNION 的结果

DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

DERIVED:衍生,表示导出表的SELECT(FROM子句的子查询)

3、table
table表示查询涉及的表或衍生的表:
在这里插入图片描述4、type

type 字段比较重要,它提供了判断查询是否高效的重要依据依据。 通过 type 字段,我们判断此次查询是 全表扫描 还是 索引扫描等。

type 常用的取值有:

system: 表中只有一条数据, 这个类型是特殊的 const 类型。

const: 针对主键或唯一索引的等值查询扫描,最多只返回一行数据。 const 查询速度非常快, 因为它仅仅读取一次即可。例如下面的这个查询,它使用了主键索引,因此 type 就是 const 类型的:explain select * from user_info where id = 2;

eq_ref: 此类型通常出现在多表的 join 查询,表示对于前表的每一个结果,都只能匹配到后表的一行结果。并且查询的比较操作通常是 =,查询效率较高。例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;

ref: 此类型通常出现在多表的 join 查询,针对于非唯一或非主键索引,或者是使用了 最左前缀 规则索引的查询。例如下面这个例子中, 就使用到了 ref 类型的查询:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5

range: 表示使用索引范围查询,通过索引字段范围获取表中部分数据记录。这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中。例如下面的例子就是一个范围查询:explain select * from user_info  where id between 2 and 8;

index: 表示全索引扫描(full index scan),和 ALL 类型类似,只不过 ALL 类型是全表扫描,而 index 类型则仅仅扫描所有的索引, 而不扫描数据。index 类型通常出现在:所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据。当是这种情况时,Extra 字段 会显示 Using index。

ALL: 表示全表扫描,这个类型的查询是性能最差的查询之一。通常来说, 我们的查询不应该出现 ALL 类型的查询,因为这样的查询在数据量大的情况下,对数据库的性能是巨大的灾难。 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免。

通常来说, 不同的 type 类型的性能关系如下:
ALL < index < range ~ index_merge < ref < eq_ref < const < system

ALL 类型因为是全表扫描, 因此在相同的查询条件下,它是速度最慢的。而 index 类型的查询虽然不是全表扫描,但是它扫描了所有的索引,因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据,因此可以过滤部分或大部分数据,因此查询效率就比较高了。

5、possible_keys
它表示 mysql 在查询时,可能使用到的索引。 注意,即使有些索引在 possible_keys 中出现,但是并不表示此索引会真正地被 mysql 使用到。 mysql 在查询时具体使用了哪些索引,由 key 字段决定。

6、key
此字段是 mysql 在当前查询时所真正使用到的索引。比如请客吃饭,possible_keys是应到多少人,key是实到多少人。

7.key_len
表示查询优化器使用了索引的字节数,这个字段可以评估组合索引是否完全被使用。

8.ref
这个表示显示索引的哪一列被使用了,如果可能的话,是一个常量。前文的type属性里也有ref,注意区别。

9.rows
rows 也是一个重要的字段,mysql 查询优化器根据统计信息,估算 sql 要查找到结果集需要扫描读取的数据行数,这个值非常直观的显示 sql 效率好坏, 原则上 rows 越少越好。可以对比key中的例子,一个没建立索引钱,rows是9,建立索引后,rows是4。

10.extra
explain 中的很多额外的信息会在 extra 字段显示, 常见的有以下几种内容:

using filesort :表示 mysql 需额外的排序操作,不能通过索引顺序达到排序效果。一般有 using filesort都建议优化去掉,因为这样的查询 cpu 资源消耗大。

using index:覆盖索引扫描,表示查询在索引树中就可查找所需数据,不用扫描表数据文件,往往说明性能不错。

using temporary:查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高,建议优化。

using where :表名使用了where过滤。

五、优化案例

EXPLAIN SELECT u.,o. FROM user_info u LEFT JOIN order_info o ON u.id=o.user_id;
执行结果,type有ALL,并且没有索引:
在这里插入图片描述开始优化,在关联列上创建索引,明显看到type列的ALL变成ref,并且用到了索引,rows也从扫描9行变成了1行:

在这里插入图片描述这里面一般有个规律是:左链接索引加在右表上面,右链接索引加在左表上面。

六、是否需要创建索引?

索引虽然能非常高效的提高查询速度,同时却会降低更新表的速度。实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。

在这里插入图片描述

版权声明:本文为KevinChen2019原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/KevinChen2019/article/details/104479442

智能推荐

【Spark 内核】 Spark 内核解析-下

Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制、Spark任务调度机制、Spark内存管理机制、Spark核心功能的运行原理等,熟练掌握Spark内核原理,能够帮助我们更好地完成Spark代码设计,并能够帮助我们准确锁定项目运行过程中出现的问题的症结所在。 Spark Shuffle 解析 Shuffle 的核心要点 ShuffleMapStage与ResultSta...

Reflect反射的基础知识

写个父类: 写个子类: 利用反射获得该子类中的属性,方法,构造,父类及接口: 运行结果:...

spring cloud netflix (07) 服务的消费者(feign)

前言 完整知识点:spring cloud netflix 系列技术栈 Feign (同步通信 HTTP通信) feign是基于接口完成服务与服务之间的通信的 搭建Feign服务 项目结构 项目搭建 pom.xml application类 application.yml 使用feign完成服务与服务之间的通信 feign是基于接口完成服务与服务之间的通信的...

AtCoder Beginner Contest 174 E.Logs

AtCoder Beginner Contest 174 E.Logs 题目链接 到最后才发现是二分,菜菜的我/(ㄒoㄒ)/~~ 我们直接二分 [1,max{a[i]}][1,max\lbrace a[i]\rbrace][1,max{a[i]}] 即可,对每一个 midmidmid,每个数 a[i]a[i]a[i] 只需要切 a[i]−1mid\frac{a[i]-1}{mid}mi...

小程序基础与实战案例

小程序开发工具与基础 小程序开发准备: 申请小程序账号( appid ) 下载并安装微信开发者工具 具体步骤如下: 先进入 微信公众平台 ,下拉页面,把鼠标悬浮在小程序图标上 然后点击 小程序开发文档 照着里面给的步骤,就可以申请到小程序账号了。 然后就可以下载 开发者工具 了 下载完打开后的界面就是这个样子 下面让我们来新建一个小程序开发项目: 在AppID输入自己刚刚注册的AppID就可以,或...

猜你喜欢

VMware centOS7 下通过minikube部署Kubernetes

1、环境准备: VMware CentOS-7-x86_64 CPU:2*2core 内存:8G 宿主机和虚拟机需网络互通,虚拟机外网访问正常 Centos发行版版本查看:cat /etc/centos-release root用户操作 2、禁用swap分区 Kubernetes 1.8开始要求关闭系统的Swap,可暂时关闭或永久禁用, 使用 $ free -m 确认swap是否为开启状态 $ s...

逻辑回归与scikit-learn

欢迎关注本人的微信公众号AI_Engine LogisticRegression 算法原理 一句话概括:逻辑回归假设数据服从伯努利分布,通过极大化似然函数(损失函数)的方法,运用梯度下降或其他优化算法来求解参数,来达到将数据二分类的目的。 定义:逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性(不是概率)。比如某用户...

指针OR数组?用他们来表达字符串又有何不同?

cocowy的编程之旅 在学习C语言的过程中我们经常可以看到或者听到这样一句话:数组其实等价于指针,例如: 在这里可以轻松的看出输出后他们的值相等,其实在计算机内存里面,p为本地变量,有着他自己的作用域。而指针变量q保存着这个数组的首地址,通过*号指向这个地址保存的变量值。 然而我们再看一个例子: 这个时候计算机报错,这是为什么呢? 其实原因很简单,指针说指向的这个字符串的地址是位于计算机代码段地...

广度搜索

广度搜索的基本使用方法 广度搜索不同于深度搜索,是一种一步一步进行的过程,每一个点只记录一遍。需要用到队列记录每一步可以走到的位置,找到目标位置输出步数即可。 用到的知识:结构体、队列 如图 首先我们需要定义一个结构体来存储每个遍历到的点和步数 广搜不会用到递归,所以可以直接在主函数里写,这里需要定义一个结构体队列 初始化队列并将起始点入列 遍历 完整代码...

NIO Socket 编程实现tcp通信入门(二)

1、NIO简介 NIO面向通道和缓冲区进行工作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。可以双向传输数据,是同步非阻塞式IO。NIO还引入了选择器机制,从而实现了一个选择器监听多个底层通道,减少了线程并发数。用NIO实现socket的Tcp通信需要掌握下面三个知识点: Buffer 缓冲区 Channel 通道 Selector 选择器   2、java.nio.Buff...