H - 悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 HDU - 2191

急!灾区的食物依然短缺! 
为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买。 
请问:你用有限的资金最多能采购多少公斤粮食呢? 

后记: 
人生是一个充满了变数的生命过程,天灾、人祸、病痛是我们生命历程中不可预知的威胁。 
月有阴晴圆缺,人有旦夕祸福,未来对于我们而言是一个未知数。那么,我们要做的就应该是珍惜现在,感恩生活—— 
感谢父母,他们给予我们生命,抚养我们成人; 
感谢老师,他们授给我们知识,教我们做人 
感谢朋友,他们让我们感受到世界的温暖; 
感谢对手,他们令我们不断进取、努力。 
同样,我们也要感谢痛苦与艰辛带给我们的财富~ 

 

Input

输入数据首先包含一个正整数C,表示有C组测试用例,每组测试用例的第一行是两个整数n和m(1<=n<=100, 1<=m<=100),分别表示经费的金额和大米的种类,然后是m行数据,每行包含3个数p,h和c(1<=p<=20,1<=h<=200,1<=c<=20),分别表示每袋的价格、每袋的重量以及对应种类大米的袋数。

Output

对于每组测试数据,请输出能够购买大米的最多重量,你可以假设经费买不光所有的大米,并且经费你可以不用完。每个实例的输出占一行。

Sample Input

1
8 2
2 100 4
4 100 2

Sample Output

400

多重背包问题。

作为一个新问题考虑,由于每个物品多了数目限制,因此初始化和递推公式都需要更改一下。初始化时,只考虑一件物品a时,f[1][j] = min{num[1], j/weight[1]}。 计算考虑i件物品承重限制为y时最大价值f[i][y]时,递推公式考虑两种情况,要么第 i 件物品一件也不放,就是f[i-1][y], 要么第 i 件物品放 k 件,其中 1 <= k <= (y/weight[i]),考虑这一共 k+1 种情况取其中的最大价值即为f[i][y]的值,即f[i][y] = max{f[i-1][y], (f[i-1][y-k*weight[i]]+k*value[i])}。 这里为什么不能像完全背包一样直接考虑f[i][y-weight[i]]+value[i]呢?因为这样不容易判断第 i 件物品的个数是否超过限制数量 num[i]。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
int n,m,w[500],c[500],num[500],dp[500];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int cur=0;
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&w[i],&c[i],&num[i]);
        }
        int ans=0;
        memset(dp,0,sizeof(dp));
        for(int i=0;i<m;i++)
        {
            for(int j=n;j>=w[i];j--)
            {
                for(int k=1;k<=num[i];k++)
                {
                    if(j>=k*w[i])
                        dp[j]=max(dp[j],dp[j-k*w[i]]+c[i]*k);
                }
                ans=max(ans,dp[j]);
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

原文链接:加载失败,请重新获取