朴素贝叶斯

标签: 朴素贝叶斯  分类

这也是在概率论课上做的实验报告,因为整理成文档比较麻烦,就直接上PPT了。

朴素贝叶斯适用于分类任务,思想简单,用统计的结果充当先验概率,并以此来估计后验概率。

 

#!/usr/bin/python
# coding=utf-8
from numpy import *

# 过滤网站的恶意留言  侮辱性:1     非侮辱性:0
# 创建一个实验样本
def loadDataSet():
    postingList = [['my','dog','has','flea','problems','help','please'],
                   ['maybe','not','take','him','to','dog','park','stupid'],
                   ['my','dalmation','is','so','cute','I','love','him'],
                   ['stop','posting','stupid','worthless','garbage'],
                   ['mr','licks','ate','my','steak','how','to','stop','him'],
                   ['quit','buying','worthless','dog','food','stupid']]
    classVec = [0,1,0,1,0,1]
    return postingList, classVec

# 创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
    vocabSet = set([])      # 创建一个空集
    for document in dataSet:
        vocabSet = vocabSet | set(document)   # 创建两个集合的并集
    return list(vocabSet)

# 将文档词条转换成词向量
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)        # 创建一个其中所含元素都为0的向量
    for word in inputSet:
        if word in vocabList:
            # returnVec[vocabList.index(word)] = 1     # index函数在字符串里找到字符第一次出现的位置  词集模型
            returnVec[vocabList.index(word)] += 1      # 文档的词袋模型    每个单词可以出现多次
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec

# 朴素贝叶斯分类器训练函数   从词向量计算概率
def trainNB0(trainMatrix, trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)#先验概率  某类别的邮件总数/总邮件数
    # p0Num = zeros(numWords); p1Num = zeros(numWords)
    # p0Denom = 0.0; p1Denom = 0.0
    p0Num = ones(numWords);   # 避免一个概率值为0,最后的乘积也为0
    p1Num = ones(numWords);   # 用来统计两类数据中,各词的词频
    p0Denom = 2.0;  # 用于统计0类中的总数
    p1Denom = 2.0  # 用于统计1类中的总数
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i] #在类1中所有邮件中词出现的总数
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
            # p1Vect = p1Num / p1Denom
            # p0Vect = p0Num / p0Denom
    p1Vect = log(p1Num / p1Denom)    # 在类1中,每个词的发生概率=在类1中所有邮件中词出现的总数/类1 邮件中词的总个数
    p0Vect = log(p0Num / p0Denom)      # 避免下溢出或者浮点数舍入导致的错误   下溢出是由太多很小的数相乘得到的
    return p0Vect, p1Vect, pAbusive

# 朴素贝叶斯分类器
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify*p1Vec) + log(pClass1)
    p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

def testingNB():
    listOPosts, listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat = []
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
    testEntry = ['love','my','dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)
    testEntry = ['stupid','garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)

# 调用测试方法----------------------------------------------------------------------
testingNB()

 

实验结果:

对于朴素贝叶斯的改进点:

1 用bag of words 而不是 one-hot

2 对于0概率事件采用平滑算法

3 用log处理概率 ,把乘法转化成加法,避免下溢出

4 将文本进行切分,防止垃圾邮件的关键词在全文中的密度被稀释。

5 位置权重 

 

贝叶斯的常见应用:

1 褒贬分析 (情感分析)

    1.1通过爬虫对评论进行收集、抓取

    1.2用训练好的朴素贝叶斯分类器对评论进行分别判断

    1.3然后统计比例,得到大致估计。

   难点:1中文的本身难度(双重否定、副词的位置【很不喜欢  不很喜欢】、情感表达的含蓄、转折性表达之类的)

2 拼写纠错

 

 

原文链接:加载失败,请重新获取