dijkstra

前言

  • SPFA算法由于它上限 O(NM)=O(VE)的时间复杂度,被卡掉的几率很大.在算法竞赛中,我们需要一个更稳定的算法:dijkstra.

什么是dijkstra?

  • dijkstra是一种单源最短路径算法,时间复杂度上限为O(n2)(朴素),在实际应用中较为稳定;加上堆优化之后更是具有O((n+m)log2n)的时间复杂度,在稠密图中有不俗的表现.

dijkstra的原理/流程?

  • dijkstra本质上的思想是贪心,它只适用于不含负权边的图.
  • dijkstra的流程如下:
  • 1. 初始化dis[start]=0,其余节点的dis值为无穷大.
  • 2. 找一个未被标记的,dis值最小的节点x,标记节点x.
  • 3. 遍历x的所有出边(x,y,z),dis[y]>dis[x]+z,则令dis[y]=dis[x]+z
  • 4. 重复2,3两步,直到所有点都被标记.
  • 时间复杂度为O(n2)

图解

  • 我们把点分成两类,一类是已经确定最短路径的点,称为”白点”,另一类是未确定最短路径的点,称为”蓝点”
  • (令start=1)
  • 开始时我们把dis[start]初始化为0,其余点初始化为inf
    初始化
  • 第一轮循环找到dis值最小的点1,将1变成白点,对所有与1相连的蓝点的dis值进行修改,使得dis[2]=2,dis[3]=4,dis[4]=7
    1
  • 第二轮循环找到dis值最小的点2,将2变成白点,对所有与2相连的蓝点的dis值进行修改,使得dis[3]=3,dis[5]=4
    2
  • 第三轮循环找到dis值最小的点3,将3变成白点,对所有与2相连的蓝点的dis值进行修改,使得dis[4]=4
    3
  • 接下来两轮循环分别将4,5设为白点,算法结束,求出所有点的最短路径
  • 时间复杂度O(n2)

为什么dijkstra不能处理有负权边的情况?

  • 我们来看下面这张图
    3
  • 23的边权为4,显然从13的最短路径为2(1>2>3).但在循环开始时程序会找到当前dis值最小的点3,并标记它为白点.
  • 这时的dis[3]=1,然而1并不是起点到3的最短路径.因为3已经被标为白点,所以dis[3]不会再被修改了.我们在边权存在负数的情况下得到了错误的答案.

dijkstra的堆优化?

  • 观察dijkstra的流程,发现步骤2可以优化
  • 怎么优化呢?
  • 我会zkw线段树!我会斐波那契堆!
  • 我会堆!
  • 我们可以用堆对dis数组进行维护,用O(log2n)的时间取出堆顶元素并删除,用O(log2n)遍历每条边,总复杂度O((n+m)log2n)

  • 范例代码:

#include<bits/stdc++.h>

const int MaxN = 100010, MaxM = 500010;

struct edge
{
    int to, dis, next;
};

edge e[MaxM];
int head[MaxN], dis[MaxN], cnt;
bool vis[MaxN];
int n, m, s;

inline void add_edge( int u, int v, int d )
{
    cnt++;
    e[cnt].dis = d;
    e[cnt].to = v;
    e[cnt].next = head[u];
    head[u] = cnt;
}

struct node
{
    int dis;
    int pos;
    bool operator <( const node &x )const
    {
        return x.dis < dis;
    }
};

std::priority_queue<node> q;


inline void dijkstra()
{
    dis[s] = 0;
    q.push( ( node ){0, s} );
    while( !q.empty() )
    {
        node tmp = q.top();
        q.pop();
        int x = tmp.pos, d = tmp.dis;
        if( vis[x] )
            continue;
        vis[x] = 1;
        for( int i = head[x]; i; i = e[i].next )
        {
            int y = e[i].to;
            if( dis[y] > dis[x] + e[i].dis )
            {
                dis[y] = dis[x] + e[i].dis;
                if( !vis[y] )
                {
                    q.push( ( node ){dis[y], y} );
                }
            }
        }
    }
}


int main()
{
    scanf( "%d%d%d", &n, &m, &s );
    for(int i = 1; i <= n; ++i)dis[i] = 0x7fffffff;
    for( register int i = 0; i < m; ++i )
    {
        register int u, v, d;
        scanf( "%d%d%d", &u, &v, &d );
        add_edge( u, v, d );
    }
    dijkstra();
    for( int i = 1; i <= n; i++ )
        printf( "%d ", dis[i] );
    return 0;
}

例题

  • 入门模板:P3371
  • 进阶模板:P4779
  • 其余例题请右转洛谷题库,搜索”最短路”

后记

  • 本文部分内容摘自李煜东《算法竞赛进阶指南》和《信息学竞赛一本通》
  • 友情提示:正权图请使用dijkstra算法,负权图请使用SPFA算法
原文链接:加载失败,请重新获取