Python: Socket编程

一、客户端/服务端架构

  客户端/服务端架构 即C/S架构,包括:1、硬件C/S架构,2、软件C/S架构。

  互联网中处处都是C/S架构,学习socket 就是为了完成C/S架构的开发。

 C/S架构:
  server端要:
   1、力求一直提供服务
   2、要绑定一个唯一的地址,让客户端能明确的找到服务端。

二、OSI七层

  1、一个完整的计算机系统是由硬件、操作系统、应用软件三者组成,具备了这三个条件,一台计算机系统就可以自己跟自己玩了。

  如果要跟别人一起玩,那就需要上网了。互联网的核心就是由一堆协议组成,协议就是标准,全世界人通信的标准是英语,如果把计算机比作人,互联网协议就是计算机界的英语。所有的计算机都学会了互联网协议,那所有的计算机都就可以按照统一的标准去收发信息从而完成通信了。人们按照分工不同把互联网协议从逻辑上划分了层级,详见网络通信原理:http://www.cnblogs.com/linhaifeng/articles/5937962.html

  2、学socket前学互联网协议的意义:

  学习socket编程目的是开发一款C/S架构软件,而这款软件是基于网络进行通信的。网络的核心就是一堆协议,基于网络开发软件就必须遵守这些标准;同时socket对网络通信协议进行了接口类型的封装,当需要使用某个协议的时候直接调用这个接口就能实现。

三、socket

  Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

  所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准。

  也有人将socket说成ip+port,ip是用来标识互联网中的一台主机的位置,而port是用来标识这台机器上的一个应用程序,ip地址是配置到网卡上的,而port是应用程序开启的,ip与port的绑定就标识了互联网中独一无二的一个应用程序

  而程序的pid是同一台机器上不同进程或者线程的标识

 四、套接字

  套接字起源于 20 世纪 70 年代,。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通讯。这也被称进程间通讯,或 IPC。

  套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。

  基于文件类型的套接字家族:

  名字:AF_UNIX 

  常用于linux环境中,因为linux中一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信。

  基于网络类型的套接字家族:

  名字:AF_INET

  网络通信中的ipv4协议,基于网络编程,几乎都使用AF_INEF。

五、套接字工作流程:

  先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept接收连接请求,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束。

 六、socket模块的使用方法:

 import socket
 socket.socket(socket_family,socket_type,protocal=0)
 socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。
  
 #获取tcp/ip套接字
 tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
服务端套接字函数
s.bind() 绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来

客户端套接字函数
s.connect() 主动初始化TCP服务器连接
公共用途的套接字函数
s.recv() 接收TCP数据
s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
s.recvfrom()        接收UDP数据
s.sendto() 发送UDP数据
s.close()           关闭套接字

七、基于TCP的套接字

  此时就需要深刻的理解TCP协议的三次握手,四次挥手!

     socket通信流程与打电话流程的类似,那就先以打电话的例子做一个简单的套接字通信。

 服务端
 客户端

 服务器:

import socket
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
phone.bind(('127.0.0.1',8080)) #绑定手机卡

phone.listen(5) #开机  

print('starting....')

conn,addr=phone.accept() #等待电话链接
print('电话线路是',conn)
print('客户端的手机号是',addr)

data=conn.recv(1024) #收消息 
print('客户端发来的消息是',data)

conn.send(data.upper()) #将收到的数据转换成大写,发回
conn.close()
phone.close()

客户端

import socket
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.connect(('127.0.0.1',8080)) #拨电话

phone.send('hello'.encode('utf-8'))         #发消息,说话(只能发送字节类型)

data =s.recv(1024)                           #收消息,听话
print(data.decode('utf-8'))
phone.close() 


  上述整个流程的问题是:服务端只能接受一次连接,然后就彻底关闭掉了,而且在连接的过程中,如果直接断开客户端,服务端会因为报错而中断,或者是出现不能正常连接的情况!针对这种分析,断开实际情况应该是,服务端不断接受链接,然后循环通信,通信完毕后只关闭链接,服务器能够继续接收下一次链接,并且断开连接之后,服务端应立刻释放TCP协议仍然存在的四次挥手time_wait状态占用的地址,优化处理,不影响其他客户的访问。下面是修改之后的代码:

服务端:

#coding:utf-8
#打电话举例
import socket
phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #基于TCP/IP协议通信
phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)  #提前终止TCP四次挥手
phone.bind(("127.0.0.1",8080))  #绑定手机卡

phone.listen(5)#监听连接

print("start....")
while True:   #连接循环
    conn,addr = phone.accept()#等待 被动接收连接
    print("电话线路是:",conn)
    print("客户端的手机号是:",addr)

    while True:     #通信循环
        #处理异常(客户端没有任何输入)
        try: #应对windows系统
            data = conn.recv(1024)  #接收消息  接收TCP数据
            # if not data:break   #linux系统
            print("客户端发来的消息是:",data.decode("utf-8"))
            conn.send(data.upper())  #将收到的数据,转成大写重新发给客户端
        except Exception:
            break
    conn.close()   #将这条线路关闭
phone.close()

客户端:

#coding:utf-8
import socket
phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #基于TCP/IP协议通信
phone.connect(("127.0.0.1",8080))  #主动初始化TCP服务器连接 发起连接(必须是元组形式,前边是地址,后边是接口)

while True:     #通信循环
    inp = input(">>>:").strip()
    if not inp:continue
    phone.send(inp.encode("utf-8")) #字节数据 向服务端传值

    data = phone.recv(1024)   #接收服务端返回的数据
    print(data.decode("utf-8"))

phone.close()

八、基于UDP的套接字

此处需要理解UDP协议建立链接的两次握手

基于UDP协议通信-服务端-简单版

import socket

UDP_server = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)  #先创建基于这种通信协议的对象
IP_port = ("127.0.0.1",8080)  #唯一的IP地址和端口
UDP_server.bind(IP_port)  #服务端绑定信息

while True:  #通信循环
    data,client_addr = UDP_server.recvfrom(1024)  #服务端接收发过来的数据(自定义范围值),格式:(data,客户端建立通信连接的地址)
    print(data.decode("utf-8"))  #接收的消息
    msg = input(">>>:").strip()  #交互
    UDP_server.sendto(msg.encode("utf-8"),client_addr)  #给客户端发送消息,固定格式:(data,通信地址)
基于UDP协议通信-服务端-客户端
import socket

UDP_client = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)  #先创建基于这种通信协议的对象
client_IP_port = ("127.0.0.1",8080)     #通信IP地址和端口

while True:      #通信循环
    inp = input(">>>:").strip()  #交互
    UDP_client.sendto(inp.encode("utf-8"),client_IP_port) #与服务端建立通信,发送消息,格式:(data,服务器通信地址)
    data,server_addr = UDP_client.recvfrom(1024)   #收到返回的消息
    print(data.decode("utf-8"))  #打印

九、须知:

  1、发消息,都是将数据发送到己端的发送缓存中;收消息都是从己端的缓存中收。

  2、TCP协议通信,是基于数据流的连接通信!

  2.1 send(bytes_data):发送数据流,数据流bytes_data若为空,自己这段的缓冲区也为空,操作系统不会控制tcp协议发空包,即使send无穷个空包,也跟没有一样!那么recv()就不会收到数据,这样可能就会导致通信错误,进而促使程序卡住崩溃,所以写代码的过程中要真对这一种情况进行异常处理。

  2.2 tcp基于链接通信

  • 基于链接,就需要listen()监听,服务端需要被动等待接收连接accept(),而客户端就需要根据 通信地址,建立连接connect()。
  • 基于链接,就必须先运行服务端,然后客户端再发起链接请求。
  • 对于mac系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端在收消息后加上if判断,空消息就break掉通信循环)
  • 对于windows/linux系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端通信循环内加异常处理,捕捉到异常后就break掉通讯循环)

  3、UDP协议通信,是基于数据报的连接通信

  服务端与客户端之间基于UDP协议建立通信,跟TCP协议相比,服务端就不在需要监听连接地址,客户端和服务端不再需要建立链接循环,而直接就可以实现通讯循环。并且服务端和客户端之间通信,传输的数据报,每一次通信都是发送一整个报文(带有数据消息和链接端口具体描述信息的数据)。由于无需链接通信,所以不管是否有一个正在运行的服务端,客户端只要发送消息,服务端就能收到消息;如果服务端没有打开,那客户端发送的数据就会丢失。

  同时说明一点,udp协议的客户端发送空数据,其发送过去的存在缓存中的数据包却不是空数据,而是一条打上了各种标签的报文数据,服务端再把这条报文消息接收,读取到客户端发送的内容。所以服务端也能接收到客户端发来的空数据,这样就永远不用担心出现卡机的问题。

  还要说明一点,UDP协议不同于TCP协议,从发送和接收数据传输过程中,存在缓存中的数据是一条一条的而不再是数据流,并且数据不管有没有被接收,一定时间之后都会被从缓存中清除。这样就避免了粘包的问题,可以说基于UDP协议通信的数据,永远不会出现粘包的问题!

  • recvfrom收的数据小于sendinto发送的数据时,在mac和linux系统上数据直接丢失,在windows系统上发送的比接收的大直接报错
  • 只有sendinto发送数据没有recvfrom收数据,数据丢失

  注意:基于TCP协议的通信,必须先建立链接才能进行数据传输,并且是必须先启动服务端,再启动客户端,否则报错!

  而基于UDP协议的通信,从协议定义角度去理解,不需要建立连接就能进行数据传输,所以开启服务端或是客户端没有先后顺序,就是其中一方不开也不会出问题!可以理解为基于UDP协议通信的服务端或是客户端只是负责把数据包发出去,你在不在线,接不接收我管不到,我只负责发送。

原文链接:加载失败,请重新获取